<Selection Procedure>

Selection Method for Soft Absorbers

1.Verifying the Type of Motion

Impact conditions can be divided into following categories. When making a selection, it is necessary to calculate the energy for the relevant category and then consider the attachment method.

Horizontal motion without thrust

Thrusting motion

Falling motion

Rotating motion

2. Energy Calculation

2-1. Linear motion

<Specifications to be verified>Mass of the colliding objectImpact rate
: M(kg)ThrustNumber of soft absorber receiversFalling height
Soft absorber stroke
: V(m/s)
: $\mathrm{F}(\mathrm{N})$ (air cylinder, thrust of the motor, friction, gravity, etc.)
:N
: $\mathrm{H}(\mathrm{m})$ (Only if a falling motion is applicable. The soft absorber's stroke is not included.): St(m)
<Equations>

Horizontal motion without thrust
Thrusting motion
Falling motion
$E=\frac{1}{2} \times M \times V^{2}$
$E=\frac{1}{2} \times M \times V^{2}+F \times S t$
$\mathrm{E}=\mathrm{M} \times \mathrm{g} \times(\mathrm{H}+\mathrm{St})\left(\mathrm{g}:\right.$ Acceleration due to gravity= $\left.9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

2-2. Rotating motion

<Specifications to be verified>Mass of the colliding object
: M(kg)Angular velocity of the impact
: $\omega(\mathrm{rad} / \mathrm{s})$Torque
: T(N•m)Moment of inertia
: l(kg•m²)Stopping angle
: $\theta(\mathrm{rad})$
<Equations>
Thrusting motion

2-3. Other equations (the following equations indicate the minimum values; the actual values will be larger)

Deceleration (G value) $\quad G=\frac{0.051 \times V^{2}}{S t}$

Braking force
$F=\frac{E}{S t}$

Braking time

This indicates the degree of impact at the time of collision.
(Smaller value means smaller impact)
This indicates the resistance that is generated in the soft absorber at the moment of collision. This value is required for confirming the strength of attachment parts.

This indicates the time it takes for the colliding object to come to a complete stop after colliding with a soft absorber.

Equations for the Selection of Soft Absorbers (1)

	Inertial impact (horizontal)	Cylindrical thrust (horizontal)	Motor-driven dolly (horizontal)	Friction-driven dolly (horizontal)
Impact (examples)				Kw : Motor's horsepower n 1 : Total number of wheels
Mass of the colliding ojject (kg)	M	M	M	M
Impact rate (m/s)	V	V	V	V
Kinetic energy (J)	$\mathrm{E}_{1}=\frac{1}{2} M \cdot \mathrm{~V}^{2}$	$E_{1}=\frac{1}{2} M \cdot V^{2}$	$E_{1}=\frac{1}{2} \cdot M \cdot V^{2}$	$E_{1}=\frac{1}{2} \cdot M \cdot V^{2}$
Thrust (N)	\longrightarrow	${ }_{* 1}=\frac{\pi D^{2}}{4} \times P \times 10^{6}$	${ }_{* 2} F=\frac{k w \times 2.5}{V} \times 10^{3}$	$\left(\begin{array}{l} F=0.25 \cdot \mathrm{M} \cdot \mathrm{~g} \cdot \frac{\mathrm{n} 1}{\mathrm{n} 2} \\ \mathrm{~F}=\frac{\mathrm{kw} \times 2.5}{\mathrm{~V}} \times 10^{3} \end{array}\right.$
Thrusting energy (J)	-	$\mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}$	$\mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}$	$\mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}$
Total energy (J)	$\mathrm{E}=\frac{\mathrm{E}_{1}}{\mathrm{~N}}$ (N : Number of soft absorber receivers)	$\mathrm{E}=\frac{\mathrm{E}_{1}+\mathrm{E}_{2}}{\mathrm{~N}}$ (N : Number of soft absorber receivers)	$\mathrm{E}=\frac{\mathrm{E}_{1}+\mathrm{E}_{2}}{\mathrm{~N}}$ (N : Number of soft absorber receivers)	$E=\frac{E_{1}+E_{2}}{N}$ (N : Number of soft absorber receivers)
Equivalent mass (kg)	$M e=\frac{M}{N}$	$M e=\frac{2 \cdot E}{V^{2}}$	$\mathrm{Me}=\frac{2 \cdot \mathrm{E}}{\mathrm{V}^{2}}$	$M e=\frac{2 \cdot E}{V^{2}}$

	Free-fall (vertical)	Cylindrical thrust (up and down)	Free-fall (slope)	Cylindrical thrust (slope; up and down)
Collision Models				
Collision Mass (kg)	M	M	M	M
Collision Speed (m/s)	$\mathrm{V}=\sqrt{19.6 \mathrm{H}}$	V	$\mathrm{V}=\sqrt{19.6 L \cdot \sin \alpha}$	V
Kinetic Energy (J)	$E_{1}=M \cdot g \cdot H$	$E_{1}=\frac{1}{2} M \cdot V^{2}$	$E_{1}=M \cdot g \cdot L \cdot \sin \alpha$	$\mathrm{E}_{1}=\frac{1}{2} \cdot \mathrm{M} \cdot \mathrm{V}^{2}$
Driving Force (N)	$F=M \cdot g$	$F=F_{1}+M \cdot g$ (Descending) $\mathrm{F}=\mathrm{F}_{1}-\mathrm{M} \cdot \mathrm{g}$ (Ascending) (F_{1} : Cylindrical thrust)	$\mathrm{F}=\mathrm{M} \cdot \mathrm{g} \cdot \sin \alpha$	$\mathrm{F}=\mathrm{F}+\mathrm{M} \cdot \mathrm{g} \cdot \sin \alpha$ (Descending) $\mathrm{F}=\mathrm{F}_{1}-\mathrm{M} \cdot \mathrm{g} \cdot \sin \alpha$ (Ascending) (F_{1} : Cylindrical thrust)
Driving Force Energy (J)	$\mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}$	$\mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}$	$\mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}$	$E_{2}=F \cdot S t$
Total Energy (J)	$E=\frac{E_{1}+E_{2}}{N}$ (N : Number of soft absorber receivers)	$E=\frac{E_{1}+E_{2}}{N}$ (N : Number of soft absorber receivers)	$\mathrm{E}=\frac{\mathrm{E}_{1}+\mathrm{E}_{2}}{\mathrm{~N}}$ (N : Number of soft absorber receivers)	$\mathrm{E}=\frac{\mathrm{E}_{1}+\mathrm{E}_{2}}{\mathrm{~N}}$ (N : Number of soft absorber receivers)
Equivalent Mass (kg)	$M e=\frac{2 \cdot E}{V^{2}}$	$M e=\frac{2 \cdot E}{V^{2}}$	$M e=\frac{2 \cdot E}{V^{2}}$	$\mathrm{Me}=\frac{2 \cdot \mathrm{E}}{\mathrm{V}^{2}}$

Equations for the Selection of Soft Absorbers (2)

	Free-fall (rotating)	Cylindrical thrust (rotating)	Cylindrical thrust (horizontally rotating)
Collision Models			
Collision Mass (kg)	M	M	M
Collision Speed (m/s)	$\mathrm{V}=\sqrt{\frac{2 M \cdot \mathrm{~g} \cdot \mathrm{H}}{1} \cdot \mathrm{R}^{2}}$	$V=R \cdot \omega$	$V=R \cdot \omega$
Kinetic Energy (J)	$E_{1}=M \cdot g \cdot H$	$E_{1}=\frac{1}{2} \cdot 1 \cdot \omega^{2}$	$E_{1}=\frac{1}{2} \cdot 1 \cdot \omega^{2}$
Driving Force (N)	$F=\frac{M \cdot g \cdot h}{R}$	$F=\left(\frac{\pi D^{2}}{4} \times P \times 10^{6}+M g\right) \times \frac{r}{R}-$	$F=\frac{r_{1}}{R}\left(\frac{\pi D^{2}}{4}\right) \times P \times 10^{6}$
Driving Force Energy (J)	$\mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}$	$\mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}$	$\mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}$
Total Energy (J)	$\mathrm{E}=\frac{\mathrm{E}_{1}+\mathrm{E}_{2}}{\mathrm{~N}}$ (N : Number of soft absorber receivers)	$E=\frac{E_{1}+E_{2}}{N}$ (N : Number of soft absorber receivers)	$E=\frac{E_{1}+E_{2}}{N}$ (N : Number of soft absorber receivers)
Equivalent Mass (kg)	$M e=\frac{2 \cdot E}{V^{2}}$	$M e=\frac{2 \cdot E}{V^{2}}$	$M e=\frac{2 \cdot E}{V^{2}}$

Explanation of the symbols

Symbol	Unit	Explanation	Symbol	Unit	Explanation
E	J	Total energy (per soft absorber)	α	rad	Sloping angle
E_{1}	J	Kinetic energy	θ	rad	Vibrational angle within the soft absorber stroke
E_{2}	J	Thrusting energy	R	m	Distance between the centre of rotation and absorber
P	MPa	Pressure used by the driving cylinder	r_{1}	m	Pitch circle radius of pinion gear
D	m	Internal diameter of the driving cylinder	r_{2}	m	Radius of turntable
M	kg	Mass of the colliding object	h	m	Distance between the centre of rotation and centre of gravity
V	m/s	Impact rate	T θ	$\mathrm{N} \cdot \mathrm{m}$	Driving torque
F	N	Thrust	ω	$\mathrm{rad} / \mathrm{s}$	Angular velocity
F_{1}	N	Air cylinder's thrust	1	$\mathrm{kg} \cdot \mathrm{m}^{2}$	Moment of inertia around the rotating shaft
St	m	Soft absorber stroke	N	Units	Number of soft absorber receivers
H	m	The distance an object falls until it hits the soft absorber	kw	kw	Motor capacity
L	m	Travelling distance on slope	n1		Total number of wheels
g	$\mathrm{m} / \mathrm{s}^{2}$	Acceleration due to gravity : $9.8 \mathrm{~m} / \mathrm{s}^{2}$	n2		Number of driving wheels
G		Centre of gravity			

*1 Includes empty weight and external force of a cylinder, etc.
2 Includes torque due to empty weight and torque due to motor, etc.
*3 Use whichever value is smaller.

	1. Inertial Impact (Horizontal)	2. Thrusting Motion due to Air Cylinder Thrust
	Mass of the colliding object M: 150kg Impact rate V : $1.5 \mathrm{~m} / \mathrm{s}$ Operation frequency C : 1 time/min Ambient temperature $\mathrm{t}: 0 \sim 25^{\circ} \mathrm{C}$ Number of soft absorber receivers N : 1 unit	Mass of the colliding object $\mathrm{M}: 100 \mathrm{~kg}$ Impact rate V : $0.7 \mathrm{~m} / \mathrm{s}$ Operation frequency C : 1 time/min Ambient temperature $\mathrm{t}: 0 \sim 25^{\circ} \mathrm{C}$ Thrust F: Varies with the air cylinder D : Cylinder diameter. 63 mm P : Air pressure $\cdot 0.5 \mathrm{MPa}$ Number of soft absorber receivers N : 1 unit
	1. Calculating kinetic energy	1. Calculating kinetic energy

$$
E_{1}=\frac{1}{2} M \cdot V^{2}=\frac{1}{2} \times 150 \times 1.5^{2}=169(\mathrm{~J})
$$

2. Calculating total energy

$$
E=\frac{E_{1}}{N}=\frac{169}{1}=169(\mathrm{~J})
$$

According to Items 3 and 4 of the selection procedure on page 14, tentatively select FA-3625A3-C having the maximum absorption energy of $200(\mathrm{~J})$ from the catalog.

3.Feasibility check

3-1. Using equivalent mass to check
$\mathrm{Me}=\frac{\mathrm{M}}{\mathrm{N}}=\frac{150}{1}=150(\mathrm{~kg})$
As the equivalent mass of FA-3625A3-C is $700(\mathrm{~kg})$, it does not pose a problem.
Based on these, FA-3625A3-C is selected

1. Calculating kinetic energy

$$
E_{1}=\frac{1}{2} M \cdot V^{2}=\frac{1}{2} \times 100 \times 0.7^{2}=24.5(\mathrm{~J})
$$

2. Calculating thrusting energy

Here, the soft absorber's stroke must be determined tentatively. In essence, because the absorber must have an absorption capacity larger than the calculated kinetic energy, tentatively select an absorber that has a capacity that is at least 24.5(J) higher than the catalogue specifications. Because the thrusting energy due to air cylinder must also be taken into consideration, tentatively select an absorber that has a capacity that is at least twice the kinetic energy. Here, FWM-2725FBD.* with a maximum absorption capacity of 79.4 J is tentatively selected from the catalogue. Thrusting energy isdetermined as follows.

$$
\begin{aligned}
\mathrm{F} & =\frac{\pi \cdot \mathrm{D}^{2}}{4} \times P \\
& =\frac{3.14 \times 0.063^{2}}{4} \times 0.5 \times 10^{6} \\
& =1,557(\mathrm{~N}) \\
\mathrm{St} & =25(\mathrm{~mm})=0.025(\mathrm{~m}) \\
\mathrm{E}_{2} & =\mathrm{F} \times \mathrm{St}=1.557 \times 0.025 \\
& =38.9(\mathrm{~J})
\end{aligned}
$$

3. Determine the total energy.
$E=E_{1}+E_{2}=24.5+38.9$

$$
\text { = } 63.4(\mathrm{~J})
$$

4. Feasibility check

4-1. Using absorption energy to check
As the absorption energy of FWM-2725FBD-* is $79.4(\mathrm{~J})$, it does not pose a problem.
$4-2$. Using equivalent mass to check

$$
\begin{aligned}
M \mathrm{e} & =\frac{2 \mathrm{E}}{\mathrm{~V}^{2}}=\frac{2 \times 63.4}{0.7^{2}} \\
& =259(\mathrm{~kg})
\end{aligned}
$$

As the equivalent mass of FWM-2725FBD-* is $450(\mathrm{~kg})$, it does not pose a problem.
Based on these, FWM-2725FBD-* is selected.

	3. Motor's horsepower	4. Thrusting Energy due to Motor-Driven Dolly
	\square Mass of the colliding object $\mathrm{M}: 30 \mathrm{~kg}$ \square Impact rate $\mathrm{V}: 0.7 \mathrm{~m} / \mathrm{s}$ \square Motor's horsepower $\mathrm{kw}: 1 \mathrm{kw}$ \square Operation frequency $\mathrm{C}: 1$ time $/ \mathrm{min}$ \square Ambient temperature $\mathrm{t}: 0 \sim 25^{\circ} \mathrm{C}$ \square Number of soft absorber receivers $\mathrm{N}: 1$ unit	Mass of the colliding object $\mathrm{M}: 1,200 \mathrm{~kg}$ Impact rate $\mathrm{V}: 0.5 \mathrm{~m} / \mathrm{s}$ Operation frequency C : 1 time/min Ambient temperature $\mathrm{t}: 0 \sim 25^{\circ} \mathrm{C}$ Thrust F: Varies with the motor Motor output $\cdots 3.7 \mathrm{kw}$ Number of soft absorber receivers N : 1 unit
	1. Calculating kinetic energy $E_{1}=\frac{1}{2} M \cdot V^{2}=\frac{1}{2} \times 30 \times 0.7^{2}=7.35(\mathrm{~J})$ 2. Calculating thrust $\mathrm{F}=\frac{\mathrm{kW} \cdot 2.5}{\mathrm{~V}} \times 10^{3}=\frac{1 \times 2.5}{0.7} \times 10^{3}=3,571(\mathrm{~N})$ 3. Calculating thrusting energy According to Items 3 and 4 of the selection procedure on page 14, tentatively select FA-3625A3-C having the maximum absorption energy of $200(\mathrm{~J})$ from the catalog. The thrusting energy will be as follows. $\begin{aligned} & \mathrm{St}=25(\mathrm{~mm})=0.025(\mathrm{~m}) \\ & \mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}=3.571 \times 0.025=89.3(\mathrm{~J}) \end{aligned}$ 4. Calculating total energy $\mathrm{E}=\frac{\mathrm{E}_{1}+\mathrm{E}_{2}}{\mathrm{~N}}=\frac{7.35+89.3}{1}=96.6(\mathrm{~J})$ 5. Feasibility check 5-1. Using absorption energy to check As the absorption energy of FA-3625A3-C is 200(J), it does not pose a problem. 5-2. Using equivalent mass to check $\mathrm{Me}=\frac{2 \cdot \mathrm{E}}{\mathrm{~V}^{2}}=\frac{2 \times 96.6}{0.7^{2}}=394(\mathrm{~kg})$ As the equivalent mass of FA-3625A3-C is $700(\mathrm{~kg})$, it does not pose a problem. Based on these, FA-3625A3-C is selected.	1. Calculating kinetic energy $E_{1}=\frac{1}{2} M \cdot V^{2}=\frac{1}{2} \times 1,200 \times 0.5^{2}=150(\mathrm{~J})$ 2. Calculating thrusting energy Here, the trust is first calculated. For a motor-driven dolly, the smaller calculated value based on the following two equations is used as thrust. (1) $\mathrm{F}=\frac{\mathrm{KW} \times 2.5}{\mathrm{~V}} \times 10^{3}=\frac{3.7 \times 2.5}{0.5} \times 10^{3}=18,500(\mathrm{~N})$ (2) $\mathrm{F}=\mathrm{M} \times \mathrm{g} \times 0.25 \times \frac{\mathrm{n} 1}{\mathrm{n} 2}$ (nl: Wimber of diving whees, $n 2:$ Todal number of whees) $\begin{aligned} & =1,200 \times 9.8 \times 0.25 \times \frac{1}{2} \\ & =1,470(\mathrm{~N}) \end{aligned}$ Therefore, $1,470 \mathrm{~N}$ is used as thrust. At this point, a tentative absorber is selected. FA-3650A2-C is selected as the tentative soft absorber based on the kinetic energy. Thrusting energy is determined as follows: $\begin{aligned} & \mathrm{St}=50(\mathrm{~mm})=0.05(\mathrm{~m}) \\ & \mathrm{E}_{2}=\mathrm{F} \times \mathrm{St}=1,470 \times 0.05 \\ &=73.5(\mathrm{~J}) \end{aligned}$ 3. Determine the total energy. $E=E_{1}+E_{2}=150+73.5=223.5(\mathrm{~J})$ 4. Feasibility check 4-1. Using absorption energy to check As the absorption energy of FA-3650A2-C is $400(\mathrm{~J})$, it does not pose a problem. 4-2. Using equivalent mass to check $\begin{aligned} M e & =\frac{2 E}{V^{2}}=\frac{2 \times 223.5}{0.5^{2}} \\ & =1,788(\mathrm{~kg}) \end{aligned}$ As the equivalent mass of FA-3650A2-C is $2,700(\mathrm{~kg})$, it does not pose a problem. Based on these, FA-3650A2-C is selected.

	5. Free-Fall (vertical)	6. Cylindrical thrust (up)
	\square Mass of the colliding object \square The distance of an object falls until it hits the shock absorber \square Operation frequency$\quad \mathrm{H}: \mathbf{\mathrm { C } : 0 . 1 5 \mathrm { m } / \mathrm { s }}$$\square$ Ambient temperature $\mathrm{t}: 0 \sim 2 \mathrm{time}^{\circ} \mathrm{min}$ \square Number of soft absorber receivers $\mathrm{N}: 2$ units	\square Mass of the colliding object M: 80kg \square lmpact rate V: 0.5m/s \square Operation frequency C: 1 time/min Ambient temperature $\mathrm{t}: 0 \sim 25^{\circ} \mathrm{C}$ Thrust F : Air cylinder's thrust D : Internal diameter of the driving cylinder $\cdots 80 \mathrm{~mm}$ P : Pressure used by the driving Cylinder $\cdots 0.5 \mathrm{MPa}$ \square Number of soft absorber receivers N : 1 unit
	1. Calculating impact rate $\mathrm{V}=\sqrt{2 \cdot \mathrm{~g} \cdot \mathrm{H}}=\sqrt{2 \times 9.8 \times 0.15}=1.71(\mathrm{~m} / \mathrm{s})$ 2. Calculating kinetic energy $E_{1}=\frac{1}{2} \cdot M \cdot V^{2}=\frac{1}{2} \times 300 \times 1.71^{2}=439(J)$ 3. Calculating thrust 3-1. Using equivalent mass to check $\mathrm{F}=\mathrm{M} \cdot \mathrm{g}=300 \times 9.8=2,940(\mathrm{~N})$ 4. Calculating thrusting energy According to Items 3 and 4 of the selection procedure on page 14, tentatively select FK-4250BH-C having the maximum absorption energy of 520(J) from the catalog. * Since multiple absorbers are used, tentatively select the FK type (fixed type).	1. Calculating kinetic energy $E_{1}=\frac{1}{2} M \cdot V^{2}=\frac{1}{2} \times 80 \times 0.5^{2}=10(\mathrm{~J})$ 2. Calculating thrust $\begin{aligned} F & =\frac{\pi \cdot D^{2}}{4} \times P-M \cdot g \\ & =\frac{\pi \times 80^{2}}{4} \times 0.5-80 \times 9.8=1,729(N) \end{aligned}$ 3. Calculating thrusting energy According to Items 3 and 4 of the selection procedure on page 14, tentatively select FWM-2725FBD-* having the maximum absorption energy of 79.3(J) from the catalog. The thrusting energy will be as follows. $\begin{aligned} & \mathrm{St}=25(\mathrm{~mm})=0.025(\mathrm{~m}) \\ & \mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}=1.729 \times 0.025=43.2(\mathrm{~J}) \end{aligned}$

Sample Calculation for Selecting Soft Absorbers 4

	7. Cylindrical thrust (down)	8. Free-Fall (slope)
	Mass of the colliding object $\mathrm{M}: 80 \mathrm{~kg}$ Impact rate $\mathrm{V}: 0.5 \mathrm{~m} / \mathrm{s}$ Operation frequency C: 1 time/min Ambient temperature $t: 0 \sim 25^{\circ} \mathrm{C}$ Thrust F : Air cylinder's thrust D: Intemal diameter of the driving cylinder $\cdot . .80 \mathrm{~mm}$ $P:$ Pressure used by the driving Cylinder $\cdots 0.5 \mathrm{MPa}$ Number of the soft absorber receivers $N: 1$ unit	\square Mass of the colliding object $\mathrm{M}: 70 \mathrm{~kg}$ \square Travelling distance on slope $L: 0.7 \mathrm{~m}$ \square Sloping angle $\alpha: 3^{\circ}$ \square Ambient temperature $\mathrm{t}: 0 \sim 25^{\circ} \mathrm{C}$ \square Number of the soft absorber receivers $\mathrm{N}: 1$ unit
	1. Calculating kinetic energy $E_{1}=\frac{1}{2} M \cdot V^{2}=\frac{1}{2} \times 80 \times 0.5^{2}=10(\mathrm{~J})$ 2. Calculating thrust $\begin{aligned} F & =\frac{\pi \cdot D^{2}}{4} \times P+M \cdot g \\ & =\frac{\pi \times 80^{2}}{4} \times 0.5+80 \times 9.8=3,297(N) \end{aligned}$ 3. Calculating thrusting energy According to Items 3 and 4 of the selection procedure on page 14, tentatively select FWM-3035TBD-* having the maximum absorption energy of 196(J) from the catalog. The thrusting energy will be as follows. $\begin{aligned} & \mathrm{St}=35(\mathrm{~mm})=0.035(\mathrm{~m}) \\ & \mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}=3.297 \times 0.035=115(\mathrm{~J}) \end{aligned}$	1. Calculating impact rate $\begin{aligned} \mathrm{V} & =\sqrt{2 \cdot \mathrm{~g} \cdot \mathrm{~L} \cdot \sin \alpha} \\ & =\sqrt{2 \times 9.8 \times 0.7 \times \sin 3^{\circ}}=0.85(\mathrm{~m} / \mathrm{s}) \end{aligned}$ 2. Calculating kinetic energy $\begin{aligned} E_{1} & =M \cdot g \cdot L \cdot \sin \alpha \\ & =70 \times 9.8 \times 0.7 \times \sin 3^{\circ}=25.1(\mathrm{~J}) \end{aligned}$ 3. Calculating thrusting energy According to Items 3 and 4 of the selection procedure on page 14, tentatively select FA-2016E3-* having the maximum absorption energy of $35.7(\mathrm{~J})$ from the catalog. The thrusting energy will be as follows. $\begin{aligned} & \mathrm{St}=16(\mathrm{~mm})=0.016(\mathrm{~m}) \\ & \mathrm{E}_{2}=M \cdot \mathrm{~g} \cdot \sin \alpha \cdot \mathrm{St} \\ & =70 \times 9.8 \times \sin 3^{\circ} \times 0.016=0.57(\mathrm{~J}) \end{aligned}$
U U U U 0	4. Calculating total energy $E=\frac{E_{1}+E_{2}}{N}=\frac{10+115}{1}=125(\mathrm{~J})$	4. Calculating total energy $E=\frac{E_{1}+E_{2}}{N}=\frac{25.1+0.57}{1}=25.7(\mathrm{~J})$ 5. Feasibility check
$\begin{aligned} & \stackrel{⿺}{E} \\ & \stackrel{N}{N} \end{aligned}$	5. Feasibility check 5-1. Using absorption energy to check As the absorption energy of FWM-3035TBD - * is $196(\mathrm{~J})$, it does not pose a problem. 5-2. Using equivalent mass to check $\mathrm{Me}=\frac{2 \cdot \mathrm{E}}{\mathrm{~V}^{2}}=\frac{2 \times 125}{0.5^{2}}=1,000(\mathrm{~kg})$ As the equivalent mass of FWM-3035TBD - * is $1,300(\mathrm{~kg})$, it does not pose a problem. Based on these, FWM-3035TBD - * is selected.	5-1. Using absorption energy to check As the absorption energy of FA-2016E3 - * is 35(J), it does not pose a problem. 5-2. Using equivalent mass to check $\mathrm{Me}=\frac{2 \cdot \mathrm{E}}{\mathrm{~V}^{2}}=\frac{2 \times 25.7}{0.85^{2}}=71.1(\mathrm{~kg})$ As the equivalent mass of FA-2016E3 - * is $120(\mathrm{~kg})$, it does not pose a problem. Based on these, FA-2016E3 - * is selected.

	9. Cylindrical thrust (slope ; up)

3. Calculating thrusting energy

According to Items 3 and 4 of the selection procedure on page 14, tentatively select FA-2725FB-* having the maximum absorption energy of $79.3(\mathrm{~J})$ from the catalog. The thrusting energy will be as follows.
St $=25(\mathrm{~mm})=0.025(\mathrm{~m})$
$E_{2}=F \cdot S t=1,667 \times 0.025=41.7(\mathrm{~J})$
4. Calculating total energy
$E=\frac{E_{1}+E_{2}}{N}=\frac{5.6+41.7}{1}=47.3(\mathrm{~J})$

5. Feasibility check

5-1. Using absorption energy to check

> As the absorption energy of FA-2725FB

- * is 79.3(J), it does not pose a problem.

5-2. Using equivalent mass to check

$$
\mathrm{Me}=\frac{2 \cdot \mathrm{E}}{\mathrm{~V}^{2}}=\frac{2 \times 47.3}{0.4^{2}}=591(\mathrm{~kg})
$$

As the equivalent mass of FA-2725FB

- * is $650(\mathrm{~kg})$, it does not pose a problem.

Based on these, FA-2725FB- * is selected.
10. Cylindrical thrust (slope; down)

\square Mass of the colliding object	$\mathrm{M}: 70 \mathrm{~kg}$
\square Impact rate	$\mathrm{V}: 1 \mathrm{~m} / \mathrm{s}$

\square Thrust

F: Air cylinder's thrust
D: Internal diameter of the driving cylinder $\cdots 80 \mathrm{~mm}$
P : Pressure used by the driving Cylinder $\cdots 0.4 \mathrm{MPa}$
\square Sloping angle
$\alpha: 30^{\circ}$
\square Ambient temperature $\quad \mathrm{t}: 0 \sim 25^{\circ} \mathrm{C}$
\square Number of the soft absorber receivers N : 1 unit

1. Calculating kinetic energy

$E_{1}=\frac{1}{2} \cdot M \cdot V^{2}=\frac{1}{2} \times 70 \times 1^{2}=35(\mathrm{~J})$

2. Calculating thrust

$$
\begin{aligned}
F & =\frac{\pi \cdot D^{2}}{4} \cdot P+M \cdot g \cdot \sin \alpha \\
& =\frac{\pi \times 80^{2}}{4} \times 0.4+70 \times 9.8 \times \sin 30^{\circ} \\
& =2,354(\mathrm{~N})
\end{aligned}
$$

3. Calculating thrusting energy

According to Items 3 and 4 of the selection procedure on page 14, tentatively select FK-3035M-* having the maximum absorption energy of 196(J) from the catalog. The thrusting energy will be as follows.
St $=35(\mathrm{~mm})=0.035(\mathrm{~m})$
$\mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}=2,354 \times 0.035=82.4(\mathrm{~J})$
4. Calculating total energy
$E=\frac{E_{1}+E_{2}}{N}=\frac{35+82.4}{1}=117.4(\mathrm{~J})$

5. Feasibility check

5-1. Using absorption energy to check
As the absorption energy of FK-3035M- * is 196 (J), it does not pose a problem.
5-2. Using equivalent mass to check

$$
\mathrm{Me}=\frac{2 \cdot \mathrm{E}}{\mathrm{~V}^{2}}=\frac{2 \times 117.4}{1^{2}}=234.8(\mathrm{~kg})
$$

As the equivalent mass of FK-3035M

- * is $390(\mathrm{~kg})$, it does not pose a problem.

Based on these, FK-3035M- * is selected

Sample Calculation for Selecting Soft Absorbers 6

\square Overall length of a colliding objectDistance between the center of rotation and center of gravity \square Distance between the center of rotation and absorber
\square Angle of fall of a colliding object
\square Number of the soft absorber receivers
\square Operation frequency
Ambient temperature

M: 15kg
a : 0.12 m
h : 0.06m
$R: 0.1 \mathrm{~m}$
$\alpha: 60^{\circ}$
$\mathrm{N}: 1$ unit
C: 1 time/min
$t: 0 \sim 25^{\circ} \mathrm{C}$

1. Calculating kinetic energy

Obtain the distance that an object falls from the angle of fall.
$H=h \cdot \sin \alpha=0.06 \times \sin 60^{\circ}=0.051(\mathrm{~m})$
$\mathrm{E}_{1}=\mathrm{M} \cdot \mathrm{g} \cdot \mathrm{H}=15 \times 9.8 \times 0.051=7.5(\mathrm{~J})$

2. Calculating thrust

$F=\frac{h}{R} \cdot M \cdot g=\frac{0.06}{0.1} \times 15 \times 9.8=88.2(N)$

3. Calculating thrusting energy

According to Items 3 and 4 of the selection procedure on page 14, tentatively select FA-1612X3-* having the maximum absorption energy of $14.7(\mathrm{~J})$ from the catalog. The thrusting energy will be as follows.
St $=12(\mathrm{~mm})=0.012(\mathrm{~m})$
$\mathrm{E}_{2}=\mathrm{F} \cdot \mathrm{St}=88.2 \times 0.012=1.06(\mathrm{~J})$
4. Calculating total energy
$E=\frac{E_{1}+E_{2}}{N}=\frac{7.5+1.06}{1}=8.56(\mathrm{~J})$
5. Feasibility check
$5-1$. Confirmation based on the absorbed energy There is no problem because the maximum absorption energy of FA-1612X3-* is $14.7(\mathrm{~J})$.

5-2. Confirmation based on the equivalent mass Obtain the impact rate from the moment of inertia.
For the equation for obtaining the moment of inertia, refer to the Quick Reference for Moment of Inertia on page 32.

$$
\begin{aligned}
I & =M \cdot \frac{\mathrm{a}^{2}}{3}=15 \times \frac{0.12^{2}}{3}=0.072\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \\
\mathrm{V} & =\sqrt{\frac{2 \cdot M \cdot g \cdot H}{I} \cdot R^{2}} \\
& =\sqrt{\frac{2 \times 15 \times 9.8 \times 0.051}{0.072} \cdot 0.1^{2}}=1.44(\mathrm{~m} / \mathrm{s}) \\
M e & =\frac{2 \cdot E_{3}}{\mathrm{~V}^{2}}=\frac{2 \times 8.56}{1.44^{2}}=8.26(\mathrm{~kg})
\end{aligned}
$$

As the equivalent mass of FA-1612X3

- * is $35(\mathrm{~kg})$, it does not pose a problem.

Based on these, FA-1612X3- * is selected.
5-3. Confirmation based on the eccentric angle

$$
\theta=\tan ^{-1}\left(\frac{S t}{R}\right)=\tan ^{-1}\left(\frac{0.012}{0.1}\right)=6.8\left(^{\circ}\right)
$$

Since the eccentric angle of FA-1612X3-* is $\pm 2.5^{\circ}$), the eccentric angle adaptor needs to be used.

In view of the foregoing, FA-1612X3-S and the eccentric angle adaptor OP-1010XB are selected.
13. Rotating Motion due to Air Cylinder Thrust
12. Up-and-Down Motion due to Air Cylinder Thrust

$\left(\begin{array}{l}r=0.5 m \\ R=0.6 m \\ L=0.7 m\end{array}\right.$

\square Mass of the colliding object	$\mathrm{M}: 200 \mathrm{~kg}$
\square Air Cylinder rate	$\mathrm{v}: 0.5 \mathrm{~m} / \mathrm{s}$
\square Operation frequency	$\mathrm{C}: 1$ time $/ \mathrm{min}$
\square Ambient temperature	$\mathrm{t}: 0 \sim 25^{\circ} \mathrm{C}$
\square Thrust	$\mathrm{F}:$ Varies with the air cylinder
	$\mathrm{D}:$ Cylinder diameter $\cdots 80 \mathrm{~mm}$
	$\mathrm{P}:$ Air pressure $\cdots 0.5 \mathrm{MPa}$
\square Number of soft absorber receivers $\mathrm{N}: 1$ unit	

1. Calculating kinetic energy

$$
\begin{aligned}
E_{1} & =\frac{1}{2} I \omega^{2}=\frac{1}{2} \times M \times \frac{r 2^{2}}{2} \times\left(\frac{v}{r_{1}}\right)^{2} \\
& =\frac{1}{2} \times 200 \times \frac{0.5^{2}}{2} \times\left(\frac{0.5}{0.1}\right)^{2}=312.5(\mathrm{~J})
\end{aligned}
$$

Impact rate $V=v \times\left(\frac{R}{r_{1}}\right)=0.5 \times\left(\frac{0.6}{0.1}\right)=3(\mathrm{~m} / \mathrm{s})$

2. Calculating thrusting energy

$$
\begin{aligned}
E_{2} & =T \theta=F \times r \times \frac{S t}{R} \\
& =\frac{3.14 \times 0.08^{2}}{4} \times 0.5 \times 10^{6} \times 0.1 \times \frac{\mathrm{St}}{0.6}
\end{aligned}
$$

At this point, the soft absorber' s stroke must be determined tentatively. FA-4250B3-C with a maximum absorption capacity of $520(\mathrm{~J})$ is tentatively selected from the catalogue. Thrusting energy is determined as follows.

$$
E_{2}=\frac{3.14 \times 0.08^{2}}{4} \times 0.5 \times 10^{6} \times 0.1 \times \frac{0.05}{0.6}=20.9(\mathrm{~J})
$$

3. Determine the total energy.
$E=E_{1}+E_{2}=312.5+20.9=333.4(\mathrm{~J})$

4. Feasibility check

4-1. Using absorption energy to check
As the absorption energy of FA-4250B3-C is 520 (J), it does not pose a problem.
4-2. Using equivalent mass to check

$$
\mathrm{Me}=\frac{2 \mathrm{E}}{\mathrm{~V}^{2}}=\frac{2 \times 333.4}{3^{2}}=74(\mathrm{~kg})
$$

As the equivalent mass of FA-4250B3-C is 6,500 (kg), it does not pose a problem. Based on these,
FA-4250B3-C is selected

Calculation Reference for Selecting Soft Absorbers 1

Quick Reference for Moment of Inertia

Shape		Thin disc	Thin square
Rotating shaft	It is perpendicular to the rod and passes through the centre of gavity	It is paralle to the plain and passes through the centre of gavity	The exis passes through the centre of gavity and the opposing corner
Moment of inertia	$M \cdot \frac{\ell^{2}}{12}$	$M \cdot \frac{r^{2}}{4}$	$M \cdot \frac{a^{2}}{12}$
Shape	Slim rod	Thin disc	
Rotating shaft	It is perpendicular to the rod at one of the ends	It is perpendicular to the plain and passes though the centre of gavity	It is an axisthat sparalel to the plain ad passes thoughthecentre of gavity
Moment of inertia	$M \cdot \frac{\ell^{2}}{3}$	$M \cdot \frac{r^{2}}{2}$	$M \cdot \frac{b^{2} a^{2}}{6\left(b^{2}+a^{2}\right)}$

Shape	Thin rectangle	Cylinder	Thin donut shape
Rotating shaft	It is parallel to side b and passes through the centre of gravity	It is a central axis that passes through the centre of gravity	Itisan axis thatisparalletotheplain and passes though the central axis
Moment of inertia	$M \cdot \frac{a^{2}}{12}$	$M \cdot \frac{r^{2}}{2}$	$M \cdot \frac{\left(a_{1}{ }^{2}+a_{2}{ }^{2}\right)}{16}$

Shape	Thin rectangle		Square frame (i)
Rotating shaft	It is parallel to side b and is on one side	It is a central axis that passes through the mutual center	Iti s an axis that is parallet to the plain and passes trough tee cental axis
Moment of inertia	$M \cdot \frac{a^{2}}{3}$	$M \cdot \frac{r_{1}{ }^{2}+r_{2}{ }^{2}}{2}$	$M \cdot \frac{\left(a_{1}^{2}+a_{2}^{2}\right)}{12}$

Shape	Rectangle	Sphere (filled)	Square frame (ii)
Rotating shaft	Itis perpendicuar to the plan and passes through the centre of gavity	It is an axis that passes through the centre of gravity	It tis parallel to the plain and passes through the opposing corner
Moment of inertia	$M \cdot \frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{12}$	$\mathrm{M} \cdot \frac{2 \mathrm{r}^{2}}{5}$	$\mathrm{M} \cdot \frac{\left(\mathrm{a}_{1}{ }^{2}+\mathrm{a}_{2}{ }^{2}\right)}{12}$

How to mount the eccentric angle adopter

1. For a small eccentric angle

Easy placing absorber for a relatively small eccentric angle
Example of calculation
$\mathrm{R}=100 \mathrm{~mm}$
Damber stroke $=16 \mathrm{~mm}$
$\theta=\tan ^{-1} \frac{16}{100}=9^{\circ}$

2. For a large eccentric angle

Easy placing absorber but the case that eccentric angle is large
Example of calculation
$R=100 \mathrm{~mm}$
Damber stroke $=16 \mathrm{~mm}$
Offset $=15 \mathrm{~mm}$
$\theta=\tan ^{-1} \frac{16+15}{100}=17^{\circ}$

3. For the smallest eccentric angle

Collision object does not stop perpendicular to the absorber at the end of stroke but the case that the eccentric angle is the smallest

Example of calculation
$\mathrm{R}=100 \mathrm{~mm}$
Damper stroke $=16 \mathrm{~mm}$

$$
\theta=\tan ^{-1} \frac{16}{2 \times 100}=4.5^{\circ}
$$

As above, depending on the mounting way, eccentric angle shall be differed even if the R (distance from the center) and damper stroke is same. Please confirm the maximum usable eccentric angle and use the eccentric angle adaptor within the allowance.

